The Evolution of the Internet Architecture and IPv6

Geoff Huston APNIC

Does IP even have an "Architecture"?

One view is that the Internet is an **Architecture-Free technology**

- The Internet today is a product of a process of incremental short term feature creep rather than deliberate design
- There is no process of imposition of architectural standards onto deployed networks
- Each Internet Service provider is at liberty to deploy an architecture of choice (or, in the case of the carriers, use no coherent architecture at all!)

The "Adaptation" view of IP

Another view is that IP is a universal adaptation layer

- o IP sits above a large number of network media
 - SDN, SDH, Ethernet, DSL, Wireless, even carrier pigeon
- IP provides a consistent addressing and transport service for a variety of application requirements
 - Unicast and Multicast modes
 - Reliable data transfer
 - Semi-Real time streams
 - High volume streams
 - Reliable Transactions
 - multi-level Referrals

Why use an IP adaptation layer?

Simple to adapt to new media

- IP Address to MAC address resolution protocol
- IP packet framing definition
- And its done!

Simple to create composite networks

Ethernet - ATM - SDH - Ethernet - wireless

Simple to scale

- o IP networks are composite networks
- No single coordinated effort required
- Minimal interdependencies between component networks
- Very simple network-to-network interface

Simple to create applications in IP

 Applications do not need to understand or adapt to varying transport characteristics

Oops!

You can't take the falls any more without breaking something!

And the repairs are now costly and complex!

- Network Address Translators (NATs) & Application Level Gateways (ALGs) used to glue together network domains
- lots of kinds of new glue being invented—ruins predictability and makes applications more complex
- some applications remain broken, since the NAT glue does not provide fully transparent connectivity

Your body shape changes!

The addition of MPLS to the protocol model has caused some surprising outcomes in terms of using MPLS and IP as a substrate for emulated wire services

It is not obvious this this form of complexity is a reliable foundation for a scaleable network architecture. Indeed its becoming clear that MPLS and NGN approaches are good examples of vendor-inspired complex cripple-ware, rather than clear scaleable architecture

Your children now challenge your role!

- Any level of a layered network model can be seen as functionally equivalent to any other layer it all depends on the committee that standardized it
- The temptation to solve a problem by adding another layer of recursion is a fine example of computer science
 - it does not always create robust networking architectures!

Insecurities and Anxieties Appear

- IP networks today are plagued with hostile and annoying forms of traffic
- The end-to-end model of applications operating above the IP layer is causing a multitude of problems for end users, operators and IP itself
 - Firewalls, Application Level Gateways, Network mediation of traffic
 - Application servers are being embedded into the service provider's architectures
- Requirement for "robust" IP services

Your self-confidence is sagging ...

- IP alone is not enough any more
 - A crisis in confidence in "basic" IP as being a viable and sustainable platform for all forms of public and private communications services
 - there is a push to add "features" into the IP platform as a way of adding value to a basic IP service offering
 - This is leading to more complex and more expensive IP+ platforms
 - MPLS and VPNs with QoS
 - Real Time support for multi-media delivery
 - Integration of content delivery services into the IP architecture

And you recognize that you can't be the absolute best in everything...

- IP has some serious weaknesses in large scale environments that support high volume real time synchronous communications
- IP does not readily support large scale mobility environments
- IP has some problems with wide area coverage radio environments
- IP has challenges in supporting provider-based VPNs with address and service quality partitioning

And now we have a Mid-Life Identity Crisis!

The introduction of a V6 transition into IP

- Doubles the number of service interfaces
- Requires changes above and below the IP layer
- Creates subtle (and not so subtle) interoperability problems
- · More later......

Entropy or Evolution?

- It looks like the normal <u>entropy</u> (decay) that besets all large, engineered systems over time
- Its less worrisome to view this process as evolution instead
 - the Internet as an evolving lifeform or ecosystem?
 - o just let nature (the market) take its course
 - though result is undesigned and unpredictable, should not be viewed as decay. Its adaptation.

Is IPv6 evolutionary?

Is an industry-wide IPv6 transition going to proceed as:

- <u>extinction</u> acting as a catalyst to take a step to some other entirely different technology platform that may have little in common with the Internet architecture as we understood it?
- <u>evolution</u> by migrating existing IPv4 networks and their associated service market into IPv6 in a piecemeal fashion?
- <u>revolution</u> by opening up new service markets with IPv6 that directly compete with IPv4 for overall market share?

Extinction?

- The original IP architecture is dying if not already terminally dead
 - Coherent transparent end-to-end is disappearing
 - Any popular application today has to be able to negotiate through NATs, ALGs and other middleware
 - Peer-to-peer networks now require mediators and agents (SpeakFreely vs Skype), plus stun, ice,...
 - Efforts to impose overlay topologies, tunnels, virtual circuits, traffic engineering, fast reroutes, protection switches, selective QoS, policy-based switching on IP networks appear to have simply added to the cost and detracted from the end user utility
- It was a neat idea, but we killed it!

Today

- We are engineering applications and services in an environment where NATs, firewalls and ALGs are assumed to be part of the IP plumbing
 - Client-initiated transactions
 - Application-layer identities
 - Agents to orchestrate multi-party rendezvous and NAT identification and traversal
 - Multi-party shared NAT state
- All this complexity just results in more fragile applications and higher operational margins

IPv6?

- We've all heard views that:
 - IPv6 was rushed through the standards process
 - It represents a very marginal change in terms of design decisions from IPv4
 - It did not manage to tackle the larger issues of overloaded address semantics
 - It did nothing to address routing scaling issues
 - And the address architecture is so broken that it yields just 48 useful bits out of 128 *

(* same as V4 NAT!)

IPv6 or something else?

- Is there anything else around today that takes a different view how to multiplex a common communications bearer?
- How long would a new design effort take?
- Would an new design effort end up looking at an entirely different architecture? Or would it be taking a slightly different set of design trade-offs within a common set of constraints?

Alternate Worlds?

- Is there anything else around?
 Nope not in the near term
- How long would a new design effort take?
 <u>Tough At least a decade or longer</u>

(we're not getting any smarter!)

Would an entirely new design effort end up as a marginal outcome effort – would we be looking at no more than a slightly different set of design tradeoffs within a common set of constraints?
Probably

(all that effort to get nowhere different!)

So "extinction" is not very likely – there is simply no other option on our horizon

What about "evolution"?

So should we evolve?

- The general answer appears to be "yes" for most values of "we"
- The possible motivations differ for each player:
 - o Allow for networks with more directly addressed end points
 - o Reduce per-address cost
 - Reduce application complexity
 - Increase application diversity and capability
 - Allow direct peer-to-peer networking
 - Allow utility device deployment
 - Leverage further efficiencies in communications

Pressure for Change?

- The pain of deployment complexity is not shared uniformly:
 - ISPs are not application authors -- thank god!
 - ISPs are not device manufacturers -- also a good thing!
- There appear to be no clear "early adopter" rewards for IPv6
 - Existing players have strong motivations to defer expenditure decisions — because their share price is plummeting
 - New players have no compelling motivations to leap too far ahead of their seed capital
 - All players see no incremental benefit in early adoption
 - And many players short term interests lie in deferral of additional expenditure
 - The return on investment in the IPv6 business case is simply not evident in today's ISP industry

When?

So the industry response to IPv6 deployment appears to be:

"yes, of course, but later"

What is the trigger for change?

- At what point, and under what conditions, does a common position of "<u>later</u>" become a common position of "now"?
- So far we have no clear answer from industry on this question

The Case for IPv6

- IPv4 address scarcity is already driving network service provision.
 - Network designs are based on address scarcity
 - o Application designs are based on address scarcity
- We can probably support cheaper networks and more capable applications in networks that support clear and coherent endto-end packet transit
- IPv6 is a conservative, well-tested technology
- IPv6 has already achieved network deployment, end host deployment, and fielded application support
- For the Internet industry this should be a when not if question

But....

- But we are not sending the right signals that this is 'cooked and ready' - we are still playing with:
 - The Address Plan
 - Aspects of Stateless auto-configuration
 - Unique Local Addresses (whatever they may be today!)
 - Flow Label
 - QoS
 - Security
 - Mobility
 - Multi-addressing
 - Multi-homing
 - Routing capabilities
 - Revisiting endpoint identity and network locator semantics

The Business Obstacles for IPv6

- Deployment by regulation or fiat has not worked in the past repeatedly
 - o GOSIP anyone?
- There are no network effects that drive differentials at the edge
 - o its still email and still the web
- There is today a robust supply industry based on network complexity, address scarcity, and insecurity
 - And they are not going to go away quietly or quickly
- There is the prospect of further revenue erosion from simpler cheaper network models
 - Further share price erosion in an already gutted industry

More Business Obstacles for IPv6

- Having already reinvested large sums in packet-based data communications over the past decade there is little investor interest in still further infrastructure investment at present
 - The only money around these days is to fund MPLS fantasies!
- There is no current incremental revenue model to match incremental costs
 - Oops
- IPv6 promotion may have been too much too early these days IPv6 may be seen as tired not wired
 - Too much powerpoint animation!
- Short term individual interests do not match long term common imperatives
 - o The market response is never an intelligent one
- "Everything over HTTP" has proved far more viable than it should have

Meet the Enemy!

- "As easy as plugging in a NAT"
 - NATs are an excellent example of incremental deployment and incremental cost apportionment
- The search for perfection
 - Constant adjustment of the protocol specifications fuels a common level of perception that this is still immature technology
- The search for complexity
 - Pressure to include specific mechanisms for specific scenarios and functionality as a business survival model

The current situation

The entire Internet service portfolio appears to be collapsing into a small set of applications that are based on an even more limited set of HTTP transactions between servers and clients

This is independent of IPv4 or V6

Maybe it's just deregulation

- Near term business pressures simply support the case for further deferral of IPv6 infrastructure investment
- There is insufficient linkage between the added cost, complexity and fragility of NATbased applications at the edge and the costs of infrastructure deployment of IPv6 in the middle
 - Deregulated markets are not perfect information markets – pain becomes isolated from potential remedy

So "evolution" does not look that likely either

What about "revolution"?

Learning from IPv4

- IPv4 leveraged:
 - cheaper switching technologies
 - o more efficient network use
 - lower operational costs
 - structural cost transferral
- IPv4 represented a compelling and revolutionary business case of stunningly cheaper and better services to end consumers, based on the silicon revolution

IPv6?

- IPv6 represents an opportunity to embrace the communications requirements of a device-dense world
 - Way much more than PCs
 - Device population that is at least some 2 3 orders of magnitude larger than today's Internet
- BUT Only if we can further reduce IP service costs by a further 2 -3 orders of magnitude
 - Think about prices of the level of \$1 per DSL service equivalent per year

IPv6 - From PC to iPOD to iPOT

If we are seriously looking towards a world of billions of chattering devices then we need to look at an evolved communications service industry that understands the full implications of the words "commodity" and "utility"

The IPv6 Condition

- There are no compelling technical feature levers in IPv6 that are driving new investments in existing IP service platforms
- There are no compelling revenue levers in IPv6 that are driving drive new investments in existing IP service platforms
- The silicon industry has made the shift from <u>value</u> to <u>volume</u> years ago
- What will drive IPv6 deployment in a device rich world is also a radical and <u>revolutionary</u> value to volume shift in the IP packet carriage industry

IPv6 Revolutionary Leverage

Volume over Value

- Supporting a network infrastructure that can push down unit cost of packet delivery by orders of magnitude
- Commodity volume economics can push the industry into providing
 - even "thicker" transmission systems
 - simpler, faster switching systems
 - utility-based provider industry
 - Lightweight application transaction models

But it won't be easy

capital distribution problem

(the ones who need to innovate in the core don't have capital)

INNOVATOR	EPS (\$)	MKT CAP (\$B)
MCIW	-11.22	6.5
SPRNT/NXTL	-0.31	34
VERIO/NTT	1.98	71.6
LEVEL3	-0.74	1.9
SBC/T	1.41	78
QWEST	-0.45	7.7
COGENT	-7.42	0.2
GLBC	-13.84	0.3
SAVVIS	-0.90	0.12
ABOVENET	n/a	n/a
WILTEL	n/a	n/a
TELEGLOBE	-0.74	0.2
C&W	0.70	4.7B
TWTELCOM	-1.12	1.0
(TWARNER)	0.48	82
XO	-2.18	0.4

INNOVATOR	EPS (\$)	MKT CAP (\$B)
CISCO	0.87	108
GOOGLE	3.41	97
AMAZON	1.25	19
YAHOO	1.07	49
EBAY	0.73	51
JUNIPER	0.53	13
APPLE	1.56	47.
INTEL	1.33	141
VERISIGN	0.93	6.15
DELL	1.27	76.3
MICROSOFT	1.12	269B

source: finance.yahoo.com, 25 oct 2005

Kin Claffey - Caida - ARIN XVI IPv4 Roundtable - 26 October 2005

- So it looks like the IPv6 future may well be <u>revolution</u> where IPv6 is forced into direct customer competition with existing IPv4+NAT networks
- And the primary leverage here is one of <u>cheaper</u> and <u>bigger</u>, and not necessarily <u>better</u>

Maybe IPv6 is the catalyst towards shifting the Internet infrastructure industry a further giant leap into a future of commodity utility plumbing!

Thank you