Green Networks: Opportunities and Challenges

Ken Christensen

Department of Computer Science and Engineering University of South Florida Tampa, Florida USA 33620 christen@cse.usf.edu

> Keynote talk – IEEE LCN 2009 Zurich, Switzerland

The Grand Challenge

One of the most urgent challenges of the 21st century is to investigate new technologies that can enable a transition towards a more sustainable society with a reduced CO_2 footprint.

We need to reduce energy consumption

1

Here is one reason why...

Sea level in 2100 under "high emissions" scenario

From U.N. Intergovernmental Panel on Climate Change

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

The challenge to ICT

What role will ICT play in this grand challenge?

1) To directly reduce energy use of ICT

2)To enable energy savings in non-ICT

3

Green = sustainable

"Sustainability: Development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

- "Our Common Future" (Brundtland Report 1987 UN report)

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

USF UNIVERSITY OF SOUTH FLORIDA

One way to be "green"...

Just have less and do less

- No houses, no cars, no travel, no PCs, no Internet, etc.

North Korea at night. A model green society? I don't think so...

From http://strangemaps.wordpress.com/2007/12/16/218-koreas-dark-half/

Notion of comfortable conservation

"I mean using less energy for identical performance, measured in whatever way the consumer wishes."

- Richard Muller (Physics for Future Presidents, 2008)

UNIVERSITY OF

UNIVERSITY OF

SOUTH FLORIDA

JTH FLORIDA

Keynote talk - IEEE LCN 2009

Zurich, Switzerland

Lifecycle of "stuff" (including ICT equipment)

* E. Williams, "Revisiting Energy Used to Manufacture a Desktop Computer: Hybrid Analysis Combing Process and Economic Input-Output Methods," *Proceedings of IEEE International Symposium on Electronics and the Environment*, pp. 80-85, 2004.

7

Roadmap of this talk

This talk has four major topics:

- Quantifying energy use of ICT
- Reducing energy use of PCs
- Reducing energy use of Ethernet
- Future challenges

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Quantifying the energy use of ICT

How much energy does ICT use?

... the Internet is part of this.

A quick look at power and energy

Energy is power multiplied by time

•Power is Watts (W) and Energy is Watt-hours (Wh)

- •A kWh is about \$0.10
- •So, a TWh is about \$100 million

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Electricity use - big picture

Electricity use in the USA (2006, from LBNL)

11

A view from the IEA

The Gadgets and Gigawatts book

- Focus is on policies for energy efficient electronics
- ICT and CE energy use is about 15% of household use
 Growing very rapidly
- ICT and CE blur together at some point

UNIVERSITY OF

SOUTH FLORIDA

13

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

ICT electricity use - it is growing

Electricity consumption estimates from IEA

From "Gadgets and Gigawatts," IEA, 2009.

ICT electricity use - possible savings

Electricity savings estimates from IEA

A view from the Climate Group

The SMART 2020 report

- Focus is on ICT's role in reducing greenhouse gases
- A view of the world in 2020
 Taking into account "likely" technology developments
- Supporting organizations
 - Include Cisco, Intel, HP, Sun, national telecoms, and telecom operators

Global ICT CO₂ footprint

Today ICT is 2% of global CO_2

17

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Global ICT CO₂ footprint <u>continued</u>

PCs (not data centers) are major CO_2 contributor

From SMART 2020 report

UNIVERSITY OF

SOUTH FLORIDA

ICT CO_2 > Aviation CO_2

"The global information and communications technology (ICT) industry accounts for approximately 2 percent of global carbon dioxide (CO_2) emissions, a figure equivalent to aviation."

- Gartner Group, Inc. (2007)

ICT electricity use - more numbers

\cdot In the USA

-2% of total electricity used is from PCs (EPA)

-1.5% is from data centers (Congressional report)

\cdot In the UK

-About 10% from IT equipment (Public Policy, Sun UK)

• In Italy

-Energy consumption of Telecom Italia is about 1% of total Italian energy demand (Telecom Italia)

ICT energy use - small scale

Let's add one new PC to a household

- Average US household is 10,700 kWh per year
 Much higher than in EU
- One PC at 80 W fully on 24/7 is 700 kWh per year - P2P and other applications are driving 24/7 fully-on

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

ICT energy use - the PC

The end user PC is the biggest consumer

"Desktop computing accounts for 45 percent of global carbon emissions from information technology."

- govtech.com

"Most PC energy use in the US occurs when no one is there, and this is greater than the total energy use of all network equipment."

- Bruce Nordman (LBNL)

Typical commercial PC energy use

The energy savings potential

To achieve a savings there must be waste

- Low utilization levels
- Power use not proportional with utilization

Energy-proportional computing

Reducing energy use of PCs

... this is a networking problem.

Just a few lines of code?

27

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Basic approaches to saving energy

Four basics approaches:

- 1) Slowdown
- 2) Sleep/stop
- 3) Substitute
- 4) Send/compute less

The four S's

Across multiple time and distance scales

What are effects on application QoS/QoE?

What reduced functionality is essential?

Why are PCs fully on 24/7?

Notion of network presence

If a host is not "present" on a network it loses functionality. To be present a host must be responsive to requests and be able to maintain connections.

Network presence for IPv4 is...

To maintain network presence a host must:

- Maintain host-level reachability (respond to ARP requests)
- Maintain its IP address (if DHCP is used)
- Maintain its manageability (respond to ICMP such as ping)
- Support name resolution (e.g., for NetBIOS)
- Maintain application-level reachability (respond to TCP SYN)
- Preserve application state associated with network state
 - Maintain TCP connections
 - Respond to application-level requests and heartbeat message
- Wake-up only when its full resources are needed

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Commercial offerings for PCs

Use a global (enterprise wide) controller

1) To control PC power management settings

2)"Magic Packet" to wake-up PCs for management

Verdiem Surveyor

We need to go beyond point solutions

Seek a more general solution to network presence

- 1)Distributed
- 2)Does not require new software
- 3)Standard
- 4)Architecturally clean

Notion of a proxy to cover for a sleeping host

Addressing Network Presence

* M. Allman, K. Christensen, B. Nordman, and V. Paxson, "Enabling an Energy-Efficient Future Internet through Selectively Connected End Systems," *Sixth Workshop on Hot Topics in Networks (HotNets-VI)*, November 2007.

35

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Notion of a proxy - covers for a host

Network connectivity proxying goes back 10+ years

High-level view of a proxy

Functional steps:

- 1) Host awake; becomes idle
- 2) Host transfers state to proxy on going to sleep
- 3) Proxy responds to routine traffic for sleeping host
- 4) Proxy wakes up host as needed

Proxy in a SmartNIC

The proxy could be integrated into a NIC

- When host is sleeping, NIC is still powered-up
- Same MAC and IP address in all cases

Some work in the lab

Proxy for ARP and wake-up on valid TCP SYN

• Early 2000s*

* K. Christensen, P. Gunaratne, B. Nordman, and A. George, "The Next Frontier for Communications Networks: Power Management," *Computer Communications*, Vol. 27, No. 18, pp. 1758-1770, December 2004.

39

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

More recent work

Proxying for TCP connections

- Linksys WRT54G SOHO router with OpenWRT
- Maintains TCP connections using a modified SOCKS
- Listens for messages from host
 - Two messages: "Going to sleep" and "Now awake"

Even more recent work

Proxying for Gnutella P2P connections

- Uses TCP connection proxy
- Handles QUERY messages (sends QUERY-HIT)

Most recent work

The "SIP Catcher" allowing SIP phones to sleep

From the lab of other folks

Somniloquy (Yuvraj Agarwal, UCSD)

 "Small USB-connected hardware and software plug-in system that allows a PC to remain in sleep mode while continuing to maintain network presence and run welldefined application functions"*

* From "Sleep Talking PCs Save Energy and Money," 2009. URL: http://www.jacobsschool.ucsd.edu/news/ news_releases/release.sfe?id=840

43

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Proxying as a standard

Ecma TC32-TG21 - Proxing Support for Sleep Modes

Proxying in EPA Energy Star

EPA Energy Star for Computers, Version 5.0

 "Proxying refers to a computer that maintains Full Network Connectivity as defined in Section 1 of this specification. For a system to qualify under the proxying weightings above, it must meet a nonproprietary proxying standard that has been approved by the EPA and the European Union as meeting the goals of ENERGY STAR."*

* From ENERGY STAR® Program Requirements for Computers, Version 5.0, EPA, 2009.

45

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Proxying in new products

Apple Snow Leopard

 "Wake on Demand. This is Apple's name for a new networking feature that lets a Snow Leopard Mac go to sleep while a networked base station continues to broadcast Bonjour messages about the services the sleeping computer offers."*

Bonjour Sleep Proxy, supports ARP, file and print serving, and SSH login initiation.

* From "Wake on Demand lets Snow Leopard Sleep with One Eye Open," MacWorld, August 28, 2009

Reducing Energy use of Ethernet

Can we reduce energy used by Ethernet?

... this is Energy Efficient Ethernet.

47

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Some observations and an idea

- Observation #1: Most edge links lightly utilized
 About 1% on average
- <u>Observation #2</u>: Higher rates use more power
 - About 2 to 4 W per link for 1 Gb/s versus 100 Mb/s
 - Much more for 10 Gb/s versus 1 Gb/s
- Idea: Match link data rate with utilization

Edge links are lightly utilized

Focus on the last hop link

• Bursty and low utilization (trace from Portland State)

Higher rates use more power

As data rate increases, so does power use

• 10 Gb/s Ethernet is a concern

The general idea

Can we switch to a lower link rate (and save energy) during periods of low utilization?

Big issue is time to switch between rates

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Ethernet Adaptive Link Rate (ALR)

Two parts to the problem:

- 1) Mechanism for how to switch link rate
- 2) Policy for when to change link rate

Some early publications

53

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Energy

Work done by other people...

- ALR was proposed to IEEE 802.3
 - A Study Group was formed
 - Mike Bennett from LBNL is the chair
- Became "Energy Efficient Ethernet"*
 IEEE 802.3az task force
- ALR renamed to Rapid PHY Selection (RPS)
- Much discussion on switching times
- Work done on mechanisms and policies

* Logo by Glen Kramer of Teknovus, Inc. (full permission for use granted via email dated January 27, 2007)

A better idea than ALR/RPS

Slide from November 2007 IEEE 802.3az meeting...

55

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

The low power idle approach

Low power idle is better in at least two ways:

- 1) Very low switching time (few microseconds)
- 2) Greater energy savings that ALR/RPS

Now an IEEE 802.3az task force

http://www.ieee802.org/3/az/index.html

Some press on EEE

How much savings may we get?

Estimate is from Bruce Nordman (LBNL)

"... estimate that with networking devices in homes, offices, and data centers running at 1 Gb/s, switching to 100 Mb/s whenever possible could save more than US \$300 million in energy costs."

- IEEE Spectrum (May 2008)

59

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

EEE in EPA Energy Star

EPA Energy Star for Computer Servers, Tier 2

 "Energy Efficient Ethernet: All physical layer Ethernet in servers covered by the Computer Server specification must meet the Energy Efficient Ethernet (IEEE 802.3az) standard upon its approval by the IEEE."*

* From ENERGY STAR® Version 1.0 Program Requirements for Computer Servers, Tier 2: PRELIMINARY

EEE in new products

Realtek Ethernet NIC

More thinking on reducing energy use

Can we shape the traffic during periods of low utilization to get predictable idle periods?

Periodically Paused Switched Ethernet

Basic idea is to periodically send PAUSE frames

- Power down during PAUSE (link is off) interval

PPSE animation

PPSE animation

PPSE parameters

- Key parameters
 - t_{off} = time off (the PAUSE quanta time)
 - t_{on} = time on
 - D = duty cycle

$$D = \frac{t_{on}}{t_{on} + t_{off}} \qquad t_{on} = \frac{D \cdot t_{off}}{1 - D}$$

Energy saved is roughly (1 - D)

FSM for simple PPSE

TON and TOFF are timers

67

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

FSM for adaptive PPSE

Does PPSE work?

- \cdot We have emulated PPC in a test bed
 - Test bed looks sort of like the previous figure
 - Use a PC to send PAUSE packets through a repeater
 - All links were 100 Mb/s
- We have developed a simulation model
 For studying PPSE policies and queueing behavior
- We are currently building analytical models - Of the PPSE controlled queues

69

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

(Emulated) PPSE evaluation

Experimented with streaming video

- Used a 50% duty cycle on 100 Mb/s link
 - t_{off} = 50, 100, and 300 milliseconds
 - *t_{on}= t_{off}*

\sim Artifact (at t_{off} = 300 ms)

Future challenges

Where can we go from here?

... energy savings of and by ICT.

71

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Challenges in green networks

Challenges in five areas

- 1) General (or overall)
- 2) Network equipment
- 3) Network hosts
- 4) Data centers
- 5) Distributed applications

Goal is low power use at low utilization

Challenges in green networks continued

General

- Metrics
 How do we measure energy-performance trade-offs?
- Models
 How do we model energy-performance trade-offs?
- Exposing power and usage state
 - Need to be able to remotely determine power/use state
- Architectures for selective connectivity
 - Need mechanisms/protocols for selective connectivity
 - Includes notions of proxying

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Network equipment

- Green routers and switches
- Re-design routers and switches for energy efficiency
- Data caching for energy efficiency
 Caching to reduce load network and servers
- Traffic shaping for energy efficiency
 Shaping traffic for short-term shutdown
- Traffic engineering for energy efficiency
 Routing to consolidate routes for long-term shutdown

UNIVERSITY OF

OUTH FLORIDA

Challenges in green networks continued

Network hosts

Discovery of devices, capabilities, and services
 Need to be able to discover low-power substitutes

Data center specific

- High bandwidth / low latency for dynamic virtualization
 Useful for server shutdown
- Move computing work to where power is cheapest
 "Follow the moon" for data center activity

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Challenges in green networks continued

Distributed applications

- P2P, multiplayer games, and virtual worlds
 Need to address these large and growing energy consumers
- Webcams and sensors everywhere
 Need to address these large and growing energy consumers

UNIVERSITY OF

SOUTH FLORIDA

Using ICT to reduce CO_2 footprint

Ideas from SMART 2020

- Smart motor systems
 Optimized industrial systems
- Smart logistics
 More efficient transport
- Smart buildings
 - Better management and automation
- Smart grids
 - Reduce distribution losses

77

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

ICT as an enabler of CO_2 reduction

ICT can enable savings

78

ICT is dematerializing the economy

Our economy is increasingly about...

Moving bits and not atoms

- This is how most of us now earn a living
- Made possible by networks
- Continuing trend may help us be *comfortably green*

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Conclusions

- ICT has large and growing energy use
- Majority of energy use is and will be in hosts
- Growing energy use in broadband networks
- Least growth in energy use of data centers
- Proxying is one way to reduce host energy use
- EEE to reduce networks energy use
- Moving bits and not atoms = less CO_2

Welcome to keynote for LCN 2029...

Will this be the conference of the future?

No people, just robots and video sent back home.

I hope not!

See y'all next year in Colorado, USA! ⓒ

Keynote talk – IEEE LCN 2009 Zurich, Switzerland

Any questions?

Ken Christensen

http://www.csee.usf.edu/~christen/energy/main.html

