
Demonstration of the Sensor Data Transmission
and Management Protocol (STMP)

Nils Aschenbruck◦•, Christoph Fuchs◦•, Sascha Jopen◦, Tim Schneider◦
◦ University of Bonn - Institute of Computer Science 4, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany

• Fraunhofer FKIE, Neuenahrer Str. 20, 53343 Wachtberg, Germany
{aschenbruck, cf, jopen, schneid5}@cs.uni-bonn.de

I. MOTIVATION

Nowadays, networked sensors are deployed in various sce-
narios. To transmit sensor data like GPS, temperature, or
vital signs data robust communication networks are needed.
Different applications and sensor types may have specific
requirements to the transmission of their data regarding loss-
tolerance, timeliness, priority, or completeness. These require-
ments are typically met by appropriate transport protocols.
At the lower layers, heterogeneous networks like wireless
mesh networks or long thin networks lead to specific channel
characteristics that may require the use of specifically adapted
transport protocols. Additionally, the type of scenario can also
affect the transport layer, e.g., a scenario with static nodes
compared to moving nodes with high mobility.

Of course, there are many variable requirements of different
sensor data streams and applications. But there are also some
basic functionalities that are common, such as registering
sensors at a receiver, timestamping of sensor data as well as
synchronization of all nodes.

Thus, we specify a new protocol for sensor data trans-
mission and management (STMP) that provides the basic
functionalities required by many sensor data streams while
at the same time allowing a flexible choice of the transport
protocol to be used.

The rest of this abstract is organized as follows: In section II
we introduce the basic idea of STMP. Next, we describe
our implementation in the tool called BonnSens (Section III).
Finally, we explain the setup of the demonstration IV.

II. SENSOR DATA TRANSPORT AND MANAGEMENT
PROTOCOL (STMP)

In order to avoid the necessity to implement these common
functionalities anew for each sensor data application and with
the intention to provide a common framework for the transport
of sensor data we specified the Sensor Data Transport and
Management Protocol (STMP) [3]. Besides the transport of
sensor data from a sensor node to the fusion point, STMP
is also designed for providing sensor management functions
to the fusion point. These functions include for example
adaptation of a sensor’s sample rate or measurement precision,
sensor polling, or other runtime re-configurations of the sensor
nodes. For further details, see [3].

Fig. 1. Screenshot of the BonnSens client application for Android.

III. BONNSENS

In order to demonstrate the feasibility of STMP and to
take measurements in real scenarios, we implemented STMP
and a sensor data client application for the Android platform.
Android [1] is an open source operating system developed
by Google for smartphone devices. As modern smartphones
are already equipped with a number of sensors like GPS,
accelerometers, magnetometers and also come with an IEEE
802.11 [2] wireless network interface, they provide an ideal
hardware platform for a wireless sensor node. The Android
operating system is Unix-based and, thus, allows for a limited
portability of certain software modules to other Unix derivates
running on a PC or laptop. In order to realize a consistent
implementation of STMP for sensor data applications running
on smartphones as well as for applications hosted on a laptop,
we modularized STMP by implementing it as a commonly
usable library in C named libSTMP. Client applications may
thus be programmed either using the Android API for the
deployment on smartphones or using native C code for the
deployment on a laptop both accessing the same STMP



library. In this initial implementation, we used UDP at the
transport layer. We will integrate further transport protocols
in the future. Figure 1 shows a screenshot of our sensor data
client application BonnSens for Android. BonnSens currently
supports the collection and transmission of battery, GPS,
accelerometer, and magnetometer data as well as neighbor
metric data from the ODMRP [4] routing protocol. Each
sensor at a client can be enabled separately. On activation, a
client creates an STMP sensor data association with the fusion
point by registering its active sensors. Several configurable
options are available for each sensor like the interval for
sending data and the usage of a LIFO queuing scheme instead
of the standard FIFO queue.

On the server side, that is the fusion point, we implemented
a server application using the STMP library for receiving the
sensor data from the clients and for writing it to a database.
The sensor data fusion algorithm directly operates on the data
stored in the database. The clients' tracks can be displayed
using a tracking GUI.

IV. DEMO SETUP

We will demonstrate the implementation of STMP within
BonnSens as well as the tracking GUI. This demonstration
complements our full paper [3] in the main track of LCN
2011.

ACKNOWLEDGMENTS

This work was supported in part by CONET, the Cooperat-
ing Objects Network of Excellence, funded by the European
Commission under FP7 with contract number FP7-2007-2-
224053.

REFERENCES

[1] “Android Developer Homepage,” 2011. [Online]. Available:
http://developer.android.com/index.html

[2] “Homepage of IEEE 802.11 Working Group,” 2011. [Online]. Available:
http://grouper.ieee.org/groups/802/11

[3] N. Aschenbruck and C. Fuchs, “STMP - Sensor Data Transmission and
Management Protocol,” in Proc. of the 36th IEEE Conference on Local
Computer Networks, 2011.

[4] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-demand multicast routing
protocol,” in Proc. of the IEEE Wireless Communications and Networking
Conference (WCNC), 1999, pp. 1298–1302.


