
A Component System with Automatic Service
Composition for Spontaneous Virtual Networks

Philipp Schaber
Department of Computer Science IV

University of Mannheim
Mannheim, Germany

schaber@informatik.uni-mannheim.de

Wolfgang Effelsberg
Department of Computer Science IV

University of Mannheim
Mannheim, Germany

effelsberg@informatik.uni-mannheim.de

Abstract—We propose to demonstrate a component system and
framework in the context of overlay networks, which can be used
to dynamically create and set up modularized network services.
A composer can automatically compose such services from a
library of available components, taking into account dependencies
among components and the possibility of sharing components
by different services. In addition to group communication and
publish/subscribe functionalities, which are implemented as com-
ponents already, it is very easy to extend the library with third-
party components or own implementations. The framework takes
care of the calculation of a suitable service composition, and its
deployment among all participating nodes. As the components
are linked at runtime, each composition can take into account
varying application requirements or incorporate new components
without changing the host application. Since the system is also
highly modularized itself, is allows to flexibly choose alternative
composition or deployment algorithms, or even develop new ones.

I. MOTIVATION

Many different kinds of network overlay techniques and
implementations exist today, allowing to create virtual overlay
networks on top of an existing physical network. However, for
an application developer, this also implies several drawbacks:
First, each implementation will most likely have its own
interfaces and dependencies. This renders it very difficult to
try or switch different techniques and overlays – even just for
comparison purposes. Besides different usage and interfaces,
you manually have to install and link libraries it depends
on. Also, as long as you do not compile all alternatives
into your application, you cannot dynamically select the one
that is fitting best (e.g., depending on the underlying kind
of network). Third, if you use multiple overlay services,
you might create redundant and unnecessary traffic because
each service creates it’s own control overlays. For example,
although a single DHT could be shared, each overlay service
will create and use its own one. Fixing this for monolithic
implementations would require fundamental changes to the
used libraries.

We therefore propose a system to modularize network
components, especially for the field of virtual networks using
overlay services. Our framework provides a component man-
agement, automatic composition, and deployment techniques
for dynamically created overlays. It is modularized itself to
provide a high flexibility.

II. SCOPE AND RELATED WORK

To set the scope of our work and differentiate it from similar
approaches, the basic principles, related fields, and relevant
differences are briefly described.

Our approach is to have a underlying component system
as basis, with components that are not required to adhere
to one specific, network-related interface. Instead, different
functionality can be defined each by its own interface, with
components being able to then offer a certain functionality by
implementing the according interface. Although the compo-
nent framework is thus not strictly bound to networking in
principal, it is targeted mainly at creating overlay services and
additionally provides the means to deploy a service among all
participating nodes in a network.

This is in contrast to the field of protocol composition,
which usually has stricter specifications on protocol compo-
nents, with predefined channels for communication, as they
are usually tightly integrated into a regulated protocol frame-
work. On the other side, service overlay networks (SONs)
and pervasive computing use similar concepts on interfaces
and composition, but target another goal: They use overlays
to compose arbitrary pervasive/web services, where different
nodes provide different parts of the final service. On the
contrary, our target is to support the modular creation of
overlay-based services for a distributed service among all
nodes. Different components and overlays will be used and
combined to form a service, but this composition is then equal
on all participating nodes.

III. SPOVNET – SPONTANEOUS VIRTUAL NETWORKS

SpoVNet [1] is a research project that develops overlay-
based tools and techniques for easy development and sponta-
neous deployment of distributed network applications and ser-
vices.1 As part of the SpoVNet project, ariba [3] is developed
at the Karlsruhe Institute of Technology (KIT)2. It is the base
for all other SpoVNet software and provides a self-organizing
transport connectivity across different heterogeneous networks
with an ID-based addressing. Its two main conceptual solu-
tions are: First, the Base Overlay, which brings together all

1http://www.spovnet.de
2http://www.ariba-underlay.org



participating nodes in a unified communication context and
also provides bootstrapping mechanisms for a virtual network.
A decentralized KBR overlay is used as routing and control
structure. Second, the Base Communication, which provides
end-to-end connectivity in face of heterogeneous networks.
It has a self-organizing detection of relay paths and relay
responsibilities.

Our framework uses ariba, which is encapsulated in a
wrapper component, as base communication for certain core
functionalities (such as the composition deployment). Addi-
tionally, any component can have a dependency on ariba to use
its functionality. However, the framework is not depending on
SpoVNet in principal. As the core functionality is modularized
itself, all relevant components can be easily exchanged with
other implementations. Besides that, certain services have been
already developed and later on been modularized as part of
the SpoVNet project, including group communication [2] and
a publish/subscribe-service [4]. They are now available as
components and will be part of the demonstration.

IV. OUR PROPOSED SYSTEM

Components in our system are not limited to comply to a
fixed set of interfaces, but can rather expose interfaces accord-
ing to their actually provided functionality. However, there is
a standard set of well-defined interfaces of common overlay-
related functionality (such as for sending/receiving, multicast,
etc.). All components implementing a certain interface are
considered to be in one module. As a component can imple-
ment more than one interface, it can also be in more than one
module. If the functionality of a certain interface is requested,
the composition can choose an appropriate component from
all the components in that module.

Components are implemented as dynamic libraries (.so
files in Linux). The composer can calculate a suitable composi-
tion at runtime, taking into account the requested functionality
and optionally also application requirements. As there is no
predefined component interaction, the composition process is
not limited to a certain pattern (such as stacking compo-
nents). As components can have arbitrary dependencies, the
composition result would be tree-shaped. However, as some
components additionally allow to be used simultaneously by
multiple parents, a composition is treated and stored as a
directed, cycle-free graph (see Figure 2 for two examples).
Internally, the boost graph library is used to represent the
graph. As a composition graph can be exported/imported as
XML, a composition could be also pre-calculate or manually
generated, and then simply loaded. The instantiation and
linking of the components, however, is always done at runtime,
but transparently managed by the framework.

Figure 1 shows an overview over the framework’s architec-
ture. The ServiceComposer is the central element that can
compose and instantiate compositions consisting of any of the
available components. Although it is implemented as a static
C++ library, it is modularized itself, which means that all core
functionality is implemented as exchangeable components as
well. The actual setup, i.e., which core components are used,

Fig. 2. Two sample composition graphs. In this representation, ServiceRoot
represents the application itself, which requested the interfaces IPubSub and
IGroupMulticast in this example.

can be configured through an XML file. Currently, three core
tasks are modularized into interchangeable components:

A. Component library manager

The task of the component library manager is to tell the
composer the set of components that is available for compo-
sition. The LocalXMLFiles manager, for example, parses
a set of local XML files that contain a list of components
and their descriptions. A component description consists of
the code location (the dynamic .so-library), the interfaces
a component offers, its dependencies, and other properties.
The ServerRepository can instead download all required
information and code from a central component repository.

B. Composition solver

The solver is the core composition algorithm, which
is responsible for resolving all requested interfaces and
inter-component dependencies. Depending on the type of
algorithm, the solver can also take into account non-
functional application requirements. Currently implemented is
a BruteForceSolver, and a variation that is applying a
heuristic to reduce the number of possible compositions. Both
also evaluate the possible sharing of a components — this is
how a common DHT could be shared among multiple services.
To rate different compositions that provide the same service,
an experimental evaluation system based on real component
benchmarks can be used. A third component that realizes a
distributed calculation, utilizing the ariba base communication,
is planned.

C. Composition deployment

Usually, the node that is bootstrapping the overlay network
is composing the service, which then needs to be deployed
to all participating nodes in order for the overlay to function.
This is the task of the composition deployment, and currently
realized using ariba’s base communication.

V. DEMONSTRATION SETUP & REQUIREMENTS

The demonstration will show the our framework running
dynamic and automatic service compositions. Two applica-
tions will use the composer and demonstrate the composition
and deployment algorithms. These are a simple chat and a 3D



Core components (dynamic libraries) 
Can be extended by third-party ones 

BruteForceSolver 

AribaCompositionDeployment 

ServiceComposer 
 

IComponentLibraryManager: 
Managing the components 
available to the composer 

ICompositionSolver: 
Core composition algorithm 

ICompositionDeployment: 
Deploying a calculated 

composition to all nodes 

HeuristicSolver 

A
ri

b
aW

ra
p

p
er

C
o

m
p

o
n

en
t 

AribaDistributedSolver 

M
o

d
u

la
ri

ze
d

 c
o

m
p

o
se

r 
co

re
: 

All available components (dyn. libs) 

+createFromXML() 
+composeService() 

+instantiateService() 
+createManagedService() 

EONSON1 

DISCUS 

MeshGroups 

ClusterHierarchy P
ar

t 
o

f 
Sp

o
V

N
et

 2
.0

: 

Th
ir

d
-p

ar
ty

 d
ev

el
o

p
ed

: 

… 

… 

… 

… 

ComponentManager: 
Dynamic library management 
and component instantiation 

P
u

b
lic

 
in

te
rf

ac
e:

 

X
M

L 
co

n
fi

gu
ra

ti
o

n
 

Se
le

ct
 a

n
d

 s
et

u
p

 u
se

d
 

co
re

 c
o

m
p

o
n

en
ts

 

ComposableService 
Used in application 

CompositionGraph 
All components used 

with this service 

+start(), +stop() 
+destroy() 

Access to interfaces 

… 

… 

… 

LocalXMLFiles ServerRepository 

Fig. 1. The composition framework’s architecture

multi-player space shooter game called PlanetPI4 (see Figure 3
for a screenshot), which are using the already implemented
group communication and publish/subscribe components.

The composition and deployment process will be visu-
alized, which shows how changing optimization parameters
does influence the calculated composition, and how this is
transferred to all nodes. However, it can also be seen that this
is transparent to the application and that all functionality is re-
tained. Further, the automatic deployment of components will
demonstrate how missing components can be automatically
retrieved.

Fig. 3. The multi-player game PlanetPI4.

VI. CONCLUSION AND OUTLOOK

We propose to demonstrate a component system with auto-
matic composition which is targeted at overlay networks. In
contrast to existing overlay composition systems, we provide

a highly generic solution, which can be easily extended
and adjusted. It comes with an (exchangeable) set of core
components, providing algorithms for the composition and
component management, as well as deployment techniques.
They utilizes the SpoVNet project for overlay-based tools and
techniques.

Future work will focus both on meaningful automatic rat-
ings of compositions (with regard to non-functional require-
ments and component benchmarks) and methods for a P2P
distribution of components. For the latter, component integrity
and trust are also fundamental issues that require further
research.

ACKNOWLEDGMENT

This work was partially funded through the Spontaneous
Virtual Networks (SpoVNet) research project by the Baden-
Württemberg Stiftung within the BW-FIT program.

REFERENCES

[1] R. Bless, C. Hübsch, C. P. Mayer, and O. P. Waldhorst, Future Internet
Services and Service Architectures, 1st ed. Aalborg, Denmark: River
Publishers, Jun 2011, ch. SpoVNet: An Architecture for Easy Creation
and Deployment of Service Overlays, pp. 23–47.

[2] C. Hübsch and O. Waldhorst, “Flexible Tree-based Application-Layer
Multicast,” in Proceedings of IEEE International Conference on Networks
(ICON), Singapore, Dec 2011, pp. 159–164.

[3] C. Hübsch, C. P. Mayer, S. Mies, R. Bless, O. P. Waldhorst, and
M. Zitterbart, “ariba: Rahmenwerk für Overlay-basierte Dienste,” Praxis
der Informationsverarbeitung und Kommunikation (PIK), vol. 34, no. 3,
pp. 151–155, 2011.

[4] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel,
“Dynamic publish/subscribe to meet subscriber-defined delay and band-
width constraints,” in Proceedings of the 16th International Conference
on Parallel Computing (Euro-Par 2010). Ischia, Italy: Springer, Aug
2010, pp. 458–470.


