
Demo: Energy-Efficient Status Monitoring in Sensor
Networks Using Adaptive Piggybacking

Dominik Neuner, Margit Mutschlechner and Falko Dressler
Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria

{dominik.neuner,mutschlechner,dressler}@ccs-labs.org

Abstract—In this demo, we show the capabilities of adap-
tive status monitoring in sensor networks. We developed an
architecture for integrated and adaptive status monitoring that
works as a sublayer directly integrated into the network layer.
The main advantages of this system, which extends well-known
piggybacking concepts, are to make monitoring as energy efficient
as possible while maintaining certain real-time requirements for
the logged information. Such status monitoring is needed in many
application domains that require global status for optimizing the
performance of the network. A very prominent example is data
stream processing in sensor networks. We demonstrate the main
functionality but also the performance improvements compared
to related approaches.

I. INTRODUCTION

Evaluating the energy consumption of applications and
protocols is an important task to prolong the network lifetime
in sensor networks [1], [2]. Erroneous lifetime predictions may
cause high costs and may even render a sensor network useless
before its purpose is fulfilled. Recent research strongly focuses
on power conservation, energy management, and energy-aware
applications and protocols. Application specific protocols can
be designed by appropriately trading off other performance
metrics such as delay and throughput with energy efficiency.

In order to prolong the network lifetime, it is not sufficient
to save energy at a local context. For example, the use of data
stream processing has been investigated to optimize the energy
balance (and, of course, the data processing latencies) in the
entire network [3], [4]. Energy models are required for these
optimizations [5], and, thus, a continuous status monitoring.

Classical network monitoring is performed either via push or
pull based mechanisms. Yet, the resource-critical environment
in sensor networks prohibits the usage of such complex
protocols. Monitoring is generally assumed to be periodic [6].
Many of the reported concepts are more debugging tools
than efficient status monitoring concepts [7], [8]. However,
transmitting monitoring information in additional separate
packets will drastically increase the energy consumption and
reduce the network lifetime. Thus, aggregation techniques have
been proposed [9].

Piggybacking is a technique often used for acknowledging
data in bi-directional communication protocols to reduce
the number of transmissions. Packing multiple pieces of
information into the same physical packet has the huge benefit
of reducing the performance costs in sensor networks [10].
Dunkels et al. introduced the concept of an announcement
layer [11], which piggybacks beacons and coordinates their

 

7 
5 

1 

2 

6 

3 

1
 

9 

Monitoring data 

Data packet 

8 

4 

(a) Transmission of a data packet
from node 6 to node 2; node 5 has
monitoring information available.

 

 

7 
5 

1 

2 

6 

3 

1
 

9 

Monitoring data 

Data packet 

4 

8 

(b) Piggybacked packet containing
data from node 6 and monitoring
information from node 5.

Figure 1. Piggybacking of monitoring information to a received data packet.

transmission to reduce the total number of transmissions. Status
monitoring became even more relevant with the advance of
data stream processing in sensor networks [3], [4].

In this demo, we present and discuss an integrated
and energy-efficient resource monitoring technique for self-
organizing sensor networks, extending our previous work
in [12]. The main advantage of the proposed solution is that it
supports both highly energy-efficient transmission of monitor-
ing messages using the well-known piggybacking scheme as
well as a timely delivery of status based on a per message aging
scheme. Although the transmission and reception of packets
with increased length due to the piggybacked monitoring
data marginally increases the energy consumption, it is more
energy efficient compared to transmitting monitoring data
in separate packets [10], [11]. The general drawback is the
increased delay (age) for monitoring information, because
each node has to wait for the next packet transmission to
piggyback its monitoring data. We solved this problem by
limiting the maximum (tolerated) age of monitoring data. This
can be seen as a compromise between timeliness and increased
energy consumption due to additional packet transmissions.
Our experiments confirm that, for all the investigated network
topologies and for all traffic pattern, the energy overhead of
our protocol is extremely low.

II. WSN MONITORING ARCHITECTURE

The monitoring protocol has been integrated into the network
layer in order to make it aware of all data transmitted towards
the sink node. Without loss of generality, we assume a
single sink node for the presentation of the protocol. This
can, however, easily be extended by marking both data and
monitoring packets as to which sink they need to be transmitted.



Figure 1 outlines the basic operation of our status monitoring
concept. In this example, node 6 is transmitting a data packet
towards node 1. At the same time node 5 has some monitoring
information available (cf. Figure 1a). Instead of transmitting
an additional packet with this status information, node 5 is
waiting for another packet targeted to node 1 (at least for a
threshold time interval). In our example, node 5 piggybacked
this monitoring information to the packet from node 6 and
transmits the resulting packet further towards node 1 (cf.
Figure 1b). The sink separates monitoring information from
application layer data and continues processing both separately.

In order to distinguish application layer data from monitoring
information, the protocol defines three packet types (a new
packet header is used to describe the packet type as well as
the number of piggybacked monitoring information messages):
DATA packets contain only application layer data. The origin
of the application data is defined by the network protocol
header. COMBINED packets contain application layer data and
monitoring information. Here, a count parameter indicates the
number of piggybacked monitoring messages. The maximum
number of piggybacked monitoring messages depends on the
size of the application data in the packet. The origin of each
monitoring message is indicated in the piggybacking header.
MONITORING packets are used to limit the maximum age of
monitoring information, i.e., to ensure timely delivery to the
sink node. This packet contains only monitoring messages and
count indicates their number.

The monitoring protocol uses two timers for the generation
of monitoring data messages and for limiting their age:
MONITORINGINTERVAL defines the monitoring interval in
seconds. Please note that the timer is not responsible for the
actual transmission of monitoring information; it only sets
a flag indicating its availability to the monitoring sublayer.
After successful piggybacking the monitoring data, the flag
is cleared. MONITORINGMAXAGE limits the maximum age
of monitoring information. If monitoring data is available for
this time, the monitoring sublayer sends new packet of type
MONITORING towards the sink node.

III. DEMO AND SIMULATION SETUP

For evaluating both the functionality and the performance of
our monitoring protocol, we integrated the functionality in the
sensor operating system Contiki. This system features the light-
weight multihop routing protocol Rime [13], which we used to
integrate the monitoring sublayer. We experimentally validated
the functionality using TelosB sensor nodes. For larger scale
performance evaluation, we used Contiki’s cross-level network
simulator Cooja [14]. We estimated the energy consumption
and the remaining lifetime using the Contiki Energest library.
Considering the frequently used TelosB nodes, we assume a
supply voltage of 3 V and an initial capacity of 2100 mAh.
However, more important is the behavior of the monitoring
protocol and the relative values.

A simple application running on each node except of the sink
node periodically (we used both constant and bursty packet
rates) creates data packets destined to the base station. Each

application layer data packet has a size of 40 B, i.e., roughly
half of the available payload, and the average packet rate
was 100 packet/h. For the bursty traffic, we switched between
540 packet/h and 12 packet/h. For statistical confidence, each
simulation was repeated at least 100 times with different
random seeds. We also experimented with different values
for the MONITORINGINTERVAL of 12 s, 36 s, and 108 s. The
36 s interval corresponds with the data generation rate. The
MONITORINGMAXAGE was set to 36 s.

Three different network scenarios (linear, random, and grid)
were simulated. The communication range allows only direct
neighbors to communicate with each other. We configured static
routing to exclude dynamics of rerouting during the simulation.
Please note that the longest possible path varies between 15
(linear), 9 (random), and 5 (grid).

In a first step, we determined the necessary simulation time
to obtain results with a high confidence level. Furthermore, we
analyzed the initial transient time the protocol spends in its
initialization phase. It took about 500 s for the network to get
into a steady state. We therefore decided to skip an initialization
phase of 600 s before collecting statistical information. To
prevent synchronization effects, we added a random delay of
0 min to 5 min when starting up each node. Of course, the
energy consumption during the initialization phase has not
been considered in the evaluation.

IV. SELECTED SIMULATION RESULTS

In the following, we presented selected results from our
measurements that demonstrate the capabilities of our approach.
In a first set of experiments, we evaluated the distribution of
packet types received at the sink node. This is of course highly
dependent on the scenario as well as on the monitoring interval
and maximum message age parameters. In this experiment,
each node generated on average 100 data packets during the
simulation time of 1 h. Figure 2a shows the distribution of the
packet types received at the sink for the linear network and
using a constant packet rate and a monitoring interval of 36 s.
Packets of type DATA originating at the edge nodes have a high
probability that a node along path can piggyback monitoring
information, changing the packet type to COMBINED.

The generation of MONITORING packets happens especially
at the very edge of the network. The probability depends
on the combination of the data rate from the application,
the monitoring interval, and the maximum message age. As
we allowed for some randomness in the data generation rate
(again, to prevent global synchronization effects), some of the
monitoring messages aged above the threshold, thus, resulting
in the mentioned MONITORING packets. As expected, with a
monitoring interval larger than the data generation rate, the
number of MONITORING packets is almost zero (data not
shown). We found similar patterns also in the random and grid
network scenarios (data not shown).

We further executed two sets of simulation experiments
to evaluate the overhead of the monitoring protocol in terms
of energy consumption. As a baseline, we configured all the
nodes to transmit application data only, i.e., we disabled the



2 3 4 5 6 7 8 9 11 13 15

Node

P
a
c
k
e
t/
h

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

DATA

COMBINED

MONITORING

(a) Distribution of packet types (linear
network, interval of 36 s).

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

12 12 1236 36 36108 108 108
Linear Random Grid

O
v
er

h
ea

d
 [

%
]

Monitoring interval [s]

(b) Relative energy overhead of the
monitoring protocol

2 3 4 5 6 7 8 9 11 13 15

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Node

A
g
e 

[s
]

(c) Age of monitoring messages (linear
network, interval of 108 s).

Figure 2. Simulation results for the constant traffic pattern

monitoring protocol. In the second set, the fully featured
monitoring protocol was enabled. The protocol overhead is
composed of creating and piggybacking monitoring messages as
well as of transmitting, forwarding, and receiving COMBINED
and MONITORING packets (together with the additional MAC
layer acknowledgments). Obviously, with an increasing number
of forwarded packets the energy consumption for transmitting
(TX), receiving (RX), and also for processing (CPU) increases.
We are primarily interested in the relative overhead caused by
our new protocol.

In general, it holds that the total overhead decreases for
larger monitoring intervals because of the fewer monitoring
messages. With the bursty traffic pattern, the number of
explicit MONITORING packets is higher and, therefore, also
the transmission overhead is higher.

Figure 2b shows the observed relative overhead for the
constant traffic rate in form of a boxplot. With a large
monitoring interval (few monitoring information) the protocol
overhead is about the same for all network scenarios. For a
monitoring interval of 36 s, the median is at 1.92 % for the
linear network and at 0.8 % for the grid network. Independently
of the monitoring interval, the protocol performs best in the
grid scenario. This is a result of the node distribution and the
shorter path lengths.

For evaluating the timeliness of the monitoring information,
we use additional age information included in each monitoring
message. This time corresponds to the time that the message
had to wait until transmission after its creation (limited by
MONITORINGMAXAGE). The transmission time along the path
to the sink was not measured because it strongly depends on
the used MAC protocol.

Figure 2c illustrates the message age plotted for each node
in the linear network for constant traffic and a monitoring
interval of 108 s. As can be seen, at the edge of the network
(node 16), the message age is uniformly distributed in the
interval of 0 s to 36 s with its median at 18 s. This is a direct
result of the application layer packet generation interval of
36 s. In theory, there should be an exponential decrease of the
message age with each node towards the sink because in each
step the number of application data packets doubles. This trend

can also be observed in the presented graph. Of course, the
maximum number of monitoring messages per COMBINED
packet is limited, thus, the trend is smoother towards the sink.

ACKNOWLEDGMENTS

This project has been funded in part by DFG FOR 1508
(project BATS “Dynamically adaptive applications for bat
localization using embedded communicating sensor systems”).

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Elsevier Computer Networks, vol. 38, pp.
393–422, 2002.

[2] I. Dietrich and F. Dressler, “On the Lifetime of Wireless Sensor Networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 1, 2009.

[3] K. Kalpakis and S. Tang, “Maximum lifetime continuous query processing
in wireless sensor networks,” Ad Hoc Networks, vol. 8, no. 7, 2010.

[4] N. Pollner, M. Daum, F. Dressler, and K. Meyer-Wegener, “An Overlay
Network for Integration of WSNs in Federated Stream-Processing
Environments,” in IFIP/IEEE Med-Hoc-Net 2011, Favignana Island,
Sicily, Italy, June 2011, pp. 157–164.

[5] F. J. Villanueva, M. Daum, M. Strübe, J. C. Lopez, R. Kapitza, and
F. Dressler, “Deployment-aware Energy Model for Operator Placement
in Sensor Networks,” in IEEE/ACM DCOSS 2011, IWSN Workshop,
Barcelona, Spain, June 2011, pp. 1–6.

[6] S. Rost and H. Balakrishnan, “Memento: A Health Monitoring System
for Wireless Sensor Networks,” in IEEE SECON 2006, Reston, VA,
September 2006, pp. 575–584.

[7] Z. Chen and K. Shin, “Post-Deployment Performance Debugging in
Wireless Sensor Networks,” in IEEE RTSS 2009, December 2009.

[8] K. Römer and J. Ma, “PDA: Passive distributed assertions for sensor
networks,” in ACM/IEEE IPSN 2009, San Francisco, CA, April 2009.

[9] K. Liu, Q. Ma, X. Zhao, and Y. Liu, “Self-diagnosis for large scale
wireless sensor networks,” in IEEE INFOCOM 2011, Shanghai, China,
April 2011, pp. 1539–1547.

[10] K. Lin and P. Levis, “Data Discovery and Dissemination with DIP,” in
ACM/IEEE IPSN 2008, St. Louis, MS, April 2008, pp. 433–444.

[11] A. Dunkels, L. Mottola, N. Tsiftes, F. Osterlind, J. Eriksson, and N. Finne,
“The announcement layer: beacon coordination for the sensornet stack,”
in EWSN 2011, Bonn, Germany, February 2011, pp. 211–226.

[12] F. Dressler and D. Neuner, “Energy-efficient monitoring of distributed
system resources for self-organizing sensor networks,” in IEEE RWW
2014, WiSNet Workshop. Austin, TX: IEEE, January 2013, pp. 145–147.

[13] A. Dunkels, “Rime - A Lightweight Layered Communication Stack for
Sensor Networks,” in EWSN 2007, Poster/Demo Session, Delft, The
Netherlands, January 2007.

[14] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in IEEE LCN 2006,
Tampa, FL, November 2006, pp. 641–648.


