
Automated Capture and Animated Playback of TCP

Behaviour During DASH-based Content Delivery

Jonathan Kua, Grenville Armitage, Philip Branch

Centre for Advanced Internet Architectures

Swinburne University of Technology

Melbourne, Australia

{jtkua, garmitage, pbranch}@swin.edu.au

Abstract—Transmission Control Protocol (TCP) has been for
many decades the dominant transport layer protocol that carries
the bulk of all traffic across the Internet. Although TCP was
traditionally used for reliable bulk transfers, recently it is also
becoming the protocol of choice for streaming applications –
Dynamic Adaptive Streaming over HTTP (DASH) has recently
emerged as a standard for live and on-demand streaming.
Netflix and YouTube employ DASH-like streaming strategies and
account for more than 50% of North American traffic in 2015,
representing a significant source of Internet traffic. Consumer
video streams are most likely to be bottlenecked by last-mile
ISP links and impacted by emerging Active Queue Management
(AQM) schemes for counteracting bufferbloat. However, the
interactions between different TCP algorithms, DASH traffic
(within a mix of other typical traffic) and the underlying
AQMs are not well understood. Experiments in a controlled
testbed allow shedding more light on this issue. We propose
demonstrating live DASH experiments and data visualisation
with “TCP Experiment Automation Controlled Using Python”
(TEACUP) – a software tool for running automated experiments
and data analysis in a controlled testbed. TEACUP is used for
running DASH-based experiments presented in our paper [1],
hence this demonstration will also allow experiment repeatability.

Index Terms—DASH, TCP, AQM, TEACUP, Experiments

I. INTRODUCTION

Transmission Control Protocol (TCP) has been the dominant

transport layer protocol that carries the bulk of all traffic across

the Internet for many decades. Several TCP congestion control

algorithms were developed for performance optimisation over

the last few decades. Although TCP was traditionally used for

reliable bulk transfers, recently it is also becoming the protocol

of choice for multimedia streaming applications – Dynamic

Adaptive Streaming over HTTP (DASH) has recently emerged

as a standard for live and on-demand streaming [2]. Netflix and

YouTube employ DASH-like video streaming strategies [3],

[4] and account for more than 50% of North American traffic

in 2015 [5], representing a significant source of Internet traffic.

Consumer video streams are most likely to be bottlenecked by

last-mile ISP links and impacted by emerging Active Queue

Management (AQM) schemes for counteracting bufferbloat.

However, the interactions between different TCP algorithms,

DASH traffic (within a mix of other typical traffic) and

the underlying AQMs are not well understood. Experiments

in a controlled testbed allow shedding more light on this

issue. Hence, we developed “TCP Experiment Automation

Controlled Using Python” (TEACUP)1 – a software tool

for running automated experiments and data analysis in a

controlled testbed.

Based on a configuration file and utilising Python Fabric2,

TEACUP can perform a series of experiments with differ-

ent traffic mixes, different bottlenecks , different emulated

network paths, and different host settings. For each exper-

iment permutation, TEACUP automatically collects relevant

information for post-analysis. More details on the design and

implementation of TEACUP-specific testbed can be found in

[6]. TEACUP also provides a number of native data analysis

tasks [7] and data visualisation functions with TEAPLOT [8].

We propose demonstrating running live DASH experiments,

data analysis and visualisation of experiment results with

TEACUP and TEAPLOT. TEACUP is used for running and

analysing our experiments presented in [1], hence this demon-

stration will allow for experiment repeatability.

This proposal is organised as follows: Section II describes

a brief overview of TEACUP testbed network model, design

and requirements. In Section III, we outline the extensions

to TEACUP for DASH support. Section IV describes our

proposed experiment demonstrations and equipment require-

ments. We offer concluding remarks in Section V.

II. TEACUP REQUIREMENTS AND DESIGN

In this section, we briefly describe the design requirements

of TEACUP. For more technical configuration details and

advanced usage information, refer to [6], [7], [9].

A. Testbed topology

TEACUP runs experiments in a controlled testbed environ-

ment as shown in Figure 1, where one bottleneck router inter-

connects two experiment networks. The experiment networks

contain hosts that can act as traffic sources and destinations.

The router, all hosts and TEACUP (on a control server) are

also connected to a separate control network. The control

server runs a DHCP+TFTP server for the PXE boot setup [6].

TEACUP configures hosts before each experiment and collects

1The TEACUP project originated at Centre for Advanced Internet Architec-
tures (http://caia.swin.edu.au/tools/teacup), Swinburne University of Technol-
ogy, and from version 1.0 the source code is freely available on SourceForge
at http://sourceforge.net/projects/teacup

2http://www.fabfile.org/



data from hosts after each experiment. It can also automated

the assignment of hosts to either experiment network with an

associated VLAN and act as a NAT gateway to enable all

testbed hosts to access the public Internet if necessary.

Fig. 1. TEACUP testbed overview

B. Hosts operating systems and TCP algorithms

TEACUP supports scenarios where sources and/or destina-

tions are FreeBSD (NewReno, CUBIC, CAIA Delay Gradient,

Hamilton Delay), Linux (NewReno, CUBIC),Windows (Com-

pound), or Mac OS X (NewReno).

C. Path characteristics and bottleneck AQMs

The Linux or FreeBSD bottleneck router emulates network

path characteristics by rate-shaping bandwidth limits, applying

one-way delay (OWD) and packet loss rates in either direction.

These conditions are applied bidirectionally, using separate

delay and rate shaping stages for traffic in each direction.

Hence, the path’s intrinsic Round Trip Time (RTT) is 2*OWD.

AQM schemes are implemented at the router with configurable

buffer size. Under Linux router (netem/tc), FIFO, RED, CoDel

[10], PIE [11], FQ-CoDel [12] are supported. In addition to

all the AQMs supported under Linux, the FreeBSD router

(Dummynet AQM v0.2.1 [13] patched), also supports FQ-PIE.

D. Traffic generators and statistics logging

TEACUP supports TCP bulk transfer, UDP flows (VoIP,

games-like), and data centre ‘incast’ query-response pat-

terns, HTTP streaming (DASH-like) traffic. TCP connection

statistics are logged using SIFTR3 (FreeBSD) and Web10G4

(Linux). Traffic is captured using tcpdump on all interfaces and

processed by Synthetic Packet Pairs (SPP) [14] to construct

per-packet network-layer RTT measurements.

III. TEACUP EXTENSIONS FOR DASH SUPPORT

In this section, we describe our extensions to TEACUP for

running and analysing DASH experiments.

3http://caia.swin.edu.edu.au/urp/newtcp/tools.html
4http://www.web10g.org/

A. Generating DASH flows

The TEACUP DASH traffic generator starts dash.js v2.0.05

in Chromium6 and Xorg7, and starts requesting video chunks

from the lighttpd8 server (with persistent HTTP connections)

that hosts the DASH dataset.

1) DASH server and dataset: DASH dataset is hosted on a

regular lighttpd HTTP server in the testbed hosts. We utilise

the dataset made available by ITEC-DASH [15]. The dataset9

comprise of full-length sequences at different representations

in terms of bitrates and resolutions. It is encoded and multi-

plexed using different chunk sizes and are made available with

corresponding Media Presentation Description (MPD) files.

2) DASH client: We integrated the BSD-3 licensed dash.js

DASH client into our testbed. dash.js is an initiative of the

DASH Industry Forum10 to establish a production quality

framework for building multimedia players for MPEG-DASH

content playback using client-side JavaScript libraries.

B. Analysing DASH achieved rates and representation rates

Achieved rates (AR)11 and representation rates (RR)12 are

two important metrics for measuring DASH performance.

DASH clients implement an adaptive bitrate algorithm to

retrieve chunks encoded at the highest RR sustainable by

recently observed network conditions. When AR is high, the

client will seek to retrieve future chunks encoded at a higher

RR to provide better quality of experience. When AR is low,

it will seek to retrieve future chunks encoded at a lower RR to

avoid playout buffer under-run. We extend TEACUP’s analysis

tasks to calculate ARs by using the payload lengths extracted

from HTTP response headers and the chunk transfer time. RRs

are extracted by parsing the client’s HTTP GET requests.

IV. EXPERIMENT DEMONSTRATION

We would like to demonstrate running live DASH experi-

ments, analysing and animating the experimental results with

TEACUP. Due to logistics reasons, we will replicate our

physical testbed in a virtualised environment.

A. Technical details and configuration options

• Router and hosts: The bottleneck router uses either

FreeBSD or openSUSE Linux to provide a configurable

bottleneck between clients and servers. End-hosts run

either FreeBSD NewReno or openSUSE Linux CUBIC.

5http://dashif.org/reference/players/javascript/v2.0.0/samples/
dash-if-reference-player/index.html

6https://www.chromium.org/
7https://www.x.org/
8https://www.lighttpd.net/
9The BigBuckBunny video content is an open-source animation video,

with source quality of 1080p, 9mins 46secs long by the Blender Insti-
tute. It can be downloaded from http://www-itec.uni-klu.ac.at/ftp/datasets/
DASHDataset2014/BigBuckBunny

10http://dashif.org/
11Chunk size divided by the time taken to receive it.
12The pre-encoded video bitrates available on the server.



• Path characteristics: The FreeBSD or Linux router

provides rate shaping and apply specific OWD to em-

ulate bottleneck with a specific rate and delay. We use

consumer grade rates with domestic delays.

• AQMs: Therouter implements either traditional FIFO,

Linux (CoDel, PIE and FQ-CoDel) or FreeBSD (CoDel,

PIE, FQ-CoDel, and FQ-PIE) AQMs for managing the

bottleneck queue. The total buffer size is set to 1000

packets for AQMs. We use AQMs with default settings

(recommended by IETF Internet Drafts [11], [12], [10]).

• DASH: DASH clients have the option of retrieving dif-

ferent chunk sizes (2, 4, 10, 15 secs). Both chunk-based

and byte-range requests are supported.

B. Live demonstration

Our live demonstration encompasses three main phases:

1) Experiment runs: First we set the desired DASH options,

interfering traffic and emulated network conditions in a config-

uration file before running the experiment. The audience will

be able to watch on screen how TEACUP manages the exper-

iment setup/tear-down, and also observe how it automatically

starts, runs and stops the DASH video streaming session.

2) Data analysis: We demonstrate using TEACUP’s anal-

ysis tasks to analyse various TCP (throughput, congestion

window, RTT, ACK sequence) and DASH (AR, RR) metrics

and show the generated PDF graphs (single/comparison plots).

3) Results animation and visualisation: We further demon-

strate using TEAPLOT [8] – a browser-based visualisation

engine that allows 2D variable speed replay of logged TCP

and system parameters over time from data logged during

previous TEACUP experiments. We will use it to replay TCP

and system metrics of the DASH experiments. This visual

aspect will be the centre piece of our results analysis phase.

Poster display: The demonstration will also consist of an

accompanying poster summarising the intended application of

TEACUP for running and analysing DASH experiments; and

describing TEAPLOT for data animation and visualisation.

Equipment requirements: In order to run the demonstration,

we will require a table with power outlets and a monitor (with

associated cabling) for larger display. We will provide the

virtual machines and computing equipment (laptop).

V. CONCLUSIONS

With the resurgence of AQM schemes and the dominance

of DASH-based multimedia traffic, it has become increasingly

important to understand the intertwined interactions between

DASH, TCP and AQMs. Hence, we extended TEACUP to

allow us to run and analyse DASH experiments.

In this document, we propose demonstrating the functional-

ity of TEACUP in running automated DASH experiments over

various emulated network paths in a virtualised environment.

We will also show its data analysis and animation capabilities.

This demonstration will allow us to showcase TEACUP to

the academic research community; as an invaluable experi-

mental research tool for running automated and repeatable

experiments over a wide range of emulated network conditions

and system settings in a controlled testbed environment. This

demonstration will also allow for experiment repeatability of

results presented in [1].

REFERENCES

[1] J. Kua, G. Armitage, and P. Branch, “The Impact of Active Queue
Management on DASH-based Content Delivery (accepted to appear),”
in 41st Annual IEEE Conference on Local Computer Networks (LCN

2016), Dubai, United Arab Emirates (UAE), Nov. 2016.
[2] “Dynamic adaptive streaming over HTTP (DASH) – Part 1: Me-

dia presentation description and segment formats,” ISO, 2012,
iSO/IEC 23009-1:2012. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=57623.

[3] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: Impact of device and infrastructure synergies
on user experience,” in Proceedings of the 2011 ACM SIGCOMM

Conference on Internet Measurement Conference, ser. IMC ’11, 2011,
pp. 345–360.

[4] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network characteristics of video streaming traffic,” in Proceedings

of the Seventh COnference on Emerging Networking EXperiments and

Technologies, ser. CoNEXT ’11, 2011, pp. 25:1–25:12.
[5] Sandvine, “Sandvine Global Internet Phenomena Report,” https://www.

sandvine.com/downloads/general/global-internet-phenomena/2015/
global-internet-phenomena-report-latin-america-and-north-america.
pdf, 2015 (accessed May 2016).

[6] S. Zander, G. Armitage, “CAIA Testbed for TCP Experiments Version
2,” Centre for Advanced Internet Architectures, Swinburne University
of Technology, Tech. Rep. 150210C, 2015. [Online]. Available:
{http://caia.swin.edu.au/reports/150210C/CAIA-TR-150210C.pdf}

[7] ——, “TEACUP v1.0 – Data Analysis Functions,” Centre for Advanced
Internet Architectures, Swinburne University of Technology, Tech. Rep.
150529B, 2015. [Online]. Available: {http://caia.swin.edu.au/reports/
150529B/CAIA-TR-150529B.pdf}

[8] I. True, G. Armitage, and P. Branch, “Teaplot v0.1: A browser-based 3D
engine for animating TEACUP experiment data,” Centre for Advanced
Internet Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 150828A, 28 August 2015. [Online]. Available:
http://caia.swin.edu.au/reports/150828A/CAIA-TR-150828A.pdf

[9] S. Zander and G. Armitage, “TEACUP v1.0 - A System for Automated
TCP Testbed Experiments,” http://caia.swin.edu.au/reports/150529A/
CAIA-TR-150529A.pdf, Melbourne, Australia, 29 May 2015.

[10] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” IETF Draft, draft-ietf-aqm-
codel-03, March 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-codel-03

[11] R. Pan, P. Natarajan, F. Baker, G. White, B. VerSteeg, M. Prabhu,
C. Piglione, and V. Subramanian, “PIE: A Lightweight Control
Scheme To Address the Bufferbloat Problem,” IETF Draft, draft-ietf-
aqm-pie-06, April 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-pie-06

[12] T. Høeiland-Jøergensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “FlowQueue-Codel,” IETF Draft, draft-ietf-aqm-fq-
codel-06, March 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-fq-codel-06

[13] R. Al-Saadi and G. Armitage, “Dummynet AQM v0.2
– CoDel, FQ-CoDel, PIE and FQ-PIE for FreeBSD’s
ipfw/dummynet framework,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 160418A, 18 April 2016. [Online]. Available:
http://caia.swin.edu.au/reports/160418A/CAIA-TR-160418A.pdf

[14] S. Zander and G. Armitage, “Minimally-Intrusive Frequent Round Trip
Time Measurements Using Synthetic Packet Pairs,” in The 38th IEEE

Conference on Local Computer Networks (LCN 2013), October 2013.
[15] S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming

over HTTP Dataset,” in Proceedings of the 3rd Multimedia Systems

Conference, ser. MMSys ’12. New York, NY, USA: ACM, 2012,
pp. 89–94. [Online]. Available: http://doi.acm.org/10.1145/2155555.
2155570


