
Reverse Traceroute with DisNETPerf, a Distributed

Internet Paths Performance Analyzer

Sarah Wassermann∗, Pedro Casas†

∗Université de Liège

sarah.wassermann@student.ulg.ac.be

†AIT Austrian Institute of Technology

pedro.casas@ait.ac.at

Abstract—traceroute is the most widely used Internet path

diagnosis tool today. A major limitation of traceroute when

the destination is not controllable by the user is its inability to

measure reverse paths, i.e., the path from a destination back to the

source. In this demo session, we showcase DisNETPerf, a new tool

to perform reverse traceroute measurements. DisNETPerf

is able to collect measurements from the server to the user

for path performance monitoring and troubleshooting purposes,

even when the server is not under the control of the experi-

menter. DisNETPerf uses RIPE Atlas, a largely distributed active

measurements platform to perform traceroute measurements

from any arbitrarily selected server in the Internet.

Index Terms—Distributed Active Measurements; Reverse

Traceroute; RIPE Atlas Measurement Framework

I. WHY DISNETPERF?

Internet-scale services such as YouTube are provisioned

from geo-distributed servers, using large Content Delivery

Networks (CDNs). While user requests are normally redirected

to the closest servers (in terms of latency), internal CDN load-

balancing policies may select servers which lie at hundreds

of milliseconds from customers, potentially impacting their

Quality of Experience (QoE), especially under congestion of

the downlink paths connecting servers providing services (e.g.,

YouTube servers) to customers. In such a context, it is very

difficult for an ISP to find the root cause of the problem,

as she should collect path performance data from the server

perspective. A normal approach the operator would follow to

troubleshoot the problem is to run traceroute measure-

ments from some controlled node at the edge of her network

(connecting her customers to the Internet) toward some servers

provisioning the services which are getting impacted (e.g.,

YouTube and Facebook servers). Indeed, traceroute is

still today the de-facto standard tool used by operators to

investigate routing failures and performance problems [1]. By

assuming path symmetry between their controlled node and

the targeted servers, they would be able to get some initial

hints on the performance of the end-to-end paths. However,

assuming path symmetry at the Internet level is a major

mistake [2], [3], as Internet paths often become asymmet-

ric, especially at network boundaries, due to administration

policies changes among others. This has been flagged as the

number one “plague” of traceroute [1], and one can only

assume that traceroute shows relevant information for the

forward path. The reverse path itself is therefore completely

invisible, and the only solution to determine the causes of

the performance issues is to look at both forward and reverse

traceroute measurements. However, traceroute has

a major limitation when the destination is not accessible:

it cannot measure the reverse path, i.e., from destination

back to the source, as one cannot run measurements from

the inaccessible destination. This is exactly the problem we

tackle with DisNETPerf: performing reverse traceroute

measurements.

Previous work proposed a tool to perform reverse

traceroute [4], i.e., from the servers to the customers. A

major drawback of the proposed approach is that it heavily

relies on IP spoofing and IP Record Route Option, both being

not necessarily allowed everywhere [5], [6] and potentially

leading to security concerns for the case of IP spoofing. There-

fore, in [7], [8], we have introduced DisNETPerf, a Distributed

Internet Paths Performance Analyzer, which can monitor any

Internet path using distributed active measurements. While

DisNETPerf is not strictly tied to any particular distributed

measurement platform, current DisNETPerf implementation

relies on the well-known RIPE Atlas framework [9] for

distributed active measurements.

II. REVERSE TRACEROUTE WITH DISNETPERF

The primary goal of DisNETPerf is to compute and monitor

the path from a given content server to a specific user. The

current version of DisNETPerf locates the closest RIPE Atlas

probe to this content server, and gathers information about

the path leading from the selected probe to the customer.

DisNETPerf is open source and freely available on GitHub

(https://github.com/SAWassermann/DisNETPerf).

DisNETPerf uses a combined topology- and delay-based

distance notion to locate a RIPE Atlas probe that is as close

as possible to a desired target destination, from which reverse

traceroute measurements should be run. By doing so,

DisNETPerf aims at locating probes which offer a very high

path similarity to the real reverse path.

Fig. 1 describes the overall idea behind the DisNETPerf

approach. In a nutshell, given a certain content server with

IP address IPs, and a destination customer with IP address

Figure 1. DisNETPerf overview. The first step of DisNETPerf consists of
selecting a monitoring point or probe located as close as possible to a target
server, to later on perform traceroute measurements towards specific
destinations.

IPd, DisNETPerf pinpoints the closest box, namely IPc, using

a combined topology- and delay-based distance: probes are

located first by AS – using BGP routing proximity to select

probes in the same AS as IPs – and then by propagation

delay – for electing the closest probe to IPs. DisNETPerf

then periodically runs traceroute measurements from IPc

to IPd, collecting different path performance metrics such as

RTT per hop, end-to-end RTT, etc. This data might then be

used to troubleshoot paths from the content server (mimicked

by IPc) to the target customer.

Current DisNETPerf implementation uses two different

probe-selection approaches for locating IPc, partially pro-

posed in the literature for IP geolocation [10], [11], [12]. We

called these selection approaches the smallest latency (SL)

approach and the landmark (LM) approach, which we describe

next.

A. Probe Selection by Smallest Latency

The SL approach starts by determining whether RIPE Atlas

probes are located in the same AS as the targeted content

server IPs. If this is not the case, the SL approach tries to

locate probes in the neighbor ASes of IPs. Neighborhood

information is obtained through AS relationships. We use

CAIDA’s AS relationships dataset [13]. If no probes are found

in the neighbor ASes, then the SL approach randomly selects

a large (and configurable) set of boxes among all the available

ones. We call these pre-selected probes the “candidate probes”.

Once the candidate probes have been identified, the selection

of IPc can start.

The SL approach then selects as IPc the candidate probe

with the smallest latency to the target IPs. Latency is com-

puted on the basis of standard ping measurements; more

precisely, the SL approach issues 10 ping measurements from

each of the candidate probes toward IPs. The candidate probe

with the smallest minimum RTT to IPs is finally elected as

the representative probe of the content server, i.e., IPc. We

consider the minimum RTT as it provides a rough estimation

of the propagation delay between two IP addresses.

Figure 2. DisNETPerf distributed Internet measurements with RIPE Atlas.
RIPE Atlas employs a global network of probes distributed worldwide to run
large-scale active measurements.

B. Probe Selection using Landmarks

The first step of the LM approach is exactly the same as the

one followed by the SL approach, i.e., candidate probes are

firstly selected based on their AS. However, the continuation

is slightly different. The next step consists of grouping the

candidate probes in two different sets: the landmarks and the

probes that can be elected as IPc. Landmarks are chosen

randomly among all the candidate probes. Then, 10 ping

measurements are issued from each of the landmarks toward

IPs and toward all the candidate probes belonging to the

other set. For each pinged IP address, a feature vector d is

computed, containing the minimum RTT from each landmark

to this IP address. Finally, IPc is selected as the probe with

the most similar feature vector to the one of IPs, according

to the following normalized distance:

Dij =
1

K

K∑

l=1

|dil − djl|,

where K is the number of landmarks providing a RTT for both

IPi and IPj , and dil is the minimum RTT between IPi and

landmark l. When Dij is small, we assume that IPi and IPj

are close to each other. Current DisNETPerf implementation

uses 20 landmarks for each IPs.

III. DEMOING DISNETPERF

We demo DisNETPerf within the use-case scenario de-

scribed in Sec. I, in which an internal CDN load-balancing

policy employed by Google selects YouTube servers which lie

at hundreds of milliseconds from customers, impacting their

QoE. As we said, it is very difficult for an ISP to find the root

cause of the problem in such a context, as she should collect

path performance data from the server perspective. Therefore,

we run DisNETPerf to locate the best RIPE Atlas probes to

diagnose the Internet paths connecting certain YouTube servers

to a group of end users.

DisNETPerf runs locally on our laptop, and we assume it

receives real-time monitoring information coming from the

ISP’s monitoring system. At a certain time, the monitoring

Figure 3. DisNETPerf in action. The first step of the probe-location process
consists of the topology- and latency-based proximity estimation, for which
RTT measurements are performed.

system of the ISP detects an anomaly for YouTube traffic

coming from a set of Google IPs, and immediately sends

a report containing these IPs to DisNETPerf, which triggers

the aforementioned reverse traceroute procedure for these

YouTube IPs. The distributed platform used by DisNETPerf

runs worldwide on top of RIPE Atlas and it is accessed by

DisNETPerf through standard HTTP messages.

The demo of DisNETPerf uses a combination of command

line, shell messages showing the interaction between DisNET-

Perf and the distributed platform, and a powerful web GUI

provided by the RIPE Atlas platform. Fig. 2 shows a map

reflecting the location of some of the potential RIPE Atlas

probes which would be employed by the DisNETPerf demo

to perform the reverse traceroute probe location.

As an example, let us consider that the YouTube server

with IP address 216.58.212.78 is one of the servers involved

in the anomaly detected by the ISP. DisNETPerf receives

this IP address as input and instantiates an optimal probe

location (using the SL approach in this scenario) to perform

traceroute measurements from the selected probe to the

prefix of the ISP customers having QoE issues with YouTube.

Fig. 3 shows the starting phase of the DisNETPerf procedure,

in which the YouTube IP address 216.58.212.78, geo-located

in Milano (Italy), is chosen as target and is pinged from

multiple distributed RIPE Atlas probes, selected based on

topological-based notions. The candidate DisNETPerf probes

are geo-located and displayed in the world map using the RIPE

Atlas GUI, as depicted in Fig. 4. The DisNETPerf selection

selects finally the closest RIPE Atlas box to the target (located

near the city hosting the target in this case) to perform the

reverse traceroute analysis.

IV. DEMO REQUIREMENTS

To run the DisNETPerf demo, we need a standard monitor

(ideally large, 24” or more), a reliable Internet connection

(Ethernet capable preferred) and a panel for poster handling.

DisNETPerf runs directly on our laptop, which we would

bring to IEEE LCN; the DisNETPerf distributed platform

runs worldwide and it is accessed by DisNETPerf through

Figure 4. Candidate DisNETPerf probes in the world map. The YouTube IP
is geo-located in Italy, and the DisNETPerf selection selects a probe near the
city hosting the target.

standard HTTP messages. Showing a poster explaining the

overview of DisNETPerf would help the demo attendees to

better understand the demo procedures and the principles of

DisNETPerf. For demo setup, we estimate about half an hour.

REFERENCES

[1] R. A. Steenbergen, “A practical guide to (correctly) troubleshooting
with traceroute,” in NANOG 45, 2009, http://www.nanog.org/meetings/
nanog45/presentations/Sunday/RAS traceroute N45.pdf.

[2] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On routing
asymmetry in the internet,” in Global Telecommunications Conference,
2005. GLOBECOM ’05. IEEE, vol. 2, Nov 2005, pp. 6 pp.–.

[3] V. Paxson, “End-to-end routing behavior in the internet,” SIGCOMM

Comput. Commun. Rev., vol. 36, no. 5, pp. 41–56, Oct. 2006. [Online].
Available: http://doi.acm.org/10.1145/1163593.1163602

[4] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), June 2010.

[5] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the
efficacy of deployed Internet source address validation filtering,” in Proc.
ACM Internet Measurement Conference (IMC), November 2010.

[6] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, and I. Stoica,
“IP options are not an option,” University of California at Berkeley,
Technical Report UCB/EECS-2005-24, December 2005.

[7] S. Wassermann, P. Casas, and B. Donnet, “Towards DisNETPerf: a
Distributed Internet Paths Performance Analyzer,” in Proc. of the ACM

CoNEXT Student Workshop, 2015.
[8] S. Wassermann, P. Casas, B. Donnet, G. Leduc, and M. Mellia, “On the

analysis of internet paths with disnetperf, a distributed paths performance
analyzer,” in Proc. IEEE Workshop on Network Measuremnets (WNM),
2016.

[9] RIPE NCC Staff, “RIPE Atlas: A Global Internet Measurement Net-
work,” Internet Protocol Journal, 2015.

[10] E. Katz-Bassett, J. P. John, T. Anderson, A. Krishnamurthy, Y. Chawathe,
and D. Wetherall, “Towards IP geolocaiton using delay and topology
measurements,” in Proc. ACM Internet Measurement Conference (IMC),
October 2006.

[11] V. Padmanabhan and L. Subramanian, “An investigation of geographic
mapping techniques for internet hosts,” in Proc. ACM SIGCOMM,
August 2001.

[12] Y. Liao, W. Du, and G. Leduc, “A lightweight network proximity service
based on neighborhood models,” in Communications and Vehicular
Technology in the Benelux (SCVT), 2015 IEEE Symposium on, Nov
2015, pp. 1–6.

[13] The CAIDA UCSD, “AS relationships,” June 2015, http://data.caida.org/
datasets/as-relationships/serial-1/20150601.as-rel.txt.bz2.

